Abusing Google Play Billing for
fun and unlimited credits!

Guillaume Lopes - @Guillaume _Lopes

DEE P8 29/11/2019

Who am |?
e Senior Penetration Tester at RANDORI:

e 10 years of experience in different fields (Active Directory, Windows,
Linux, Web applications, Wifi, Android)

* Member of the Checkmarx Application Security Research Team
e https://www.checkmarx.com/category/blog/technical-blog/

e Security Researcher at Cobalt.io

* Play CTF (Hackthebox, Insomni’hack, Nuit du Hack, ...)

* Gives a hand to the Tipi’hack team
DEEPEHEN

https://www.checkmarx.com/category/blog/technical-blog/

Agenda

1. Google Play Billing Presentation
2. Known Vulnerabilities
3. Vulnerable Applications

4.Conclusion

IYSE C

Google Play Billing Presentation
How does it work?

)JAAUSEC

Google Play Billing Presentation

* Google Play Billing (or Google InApp Billing)

e “service that lets you sell digital content inside your
Android app”

* Android framework that allows to easily monetize
applications

* One-time products

e Subscriptions

)JAAUSEC

Google Play Billing Presentation

* One-time products

* You can buy it only once
* Premium version of an app

e Extra products (coins, credits, music, etc.)

* Subscriptions

* Need a regular payment (daily, weekly or monthly)

* Subscription to a magazine or a newspaper

)JAAUSEC

Google Play Billing Presentation

* Payment is handled by Google

* Need to have Google Play services in your device

* Credit card not exposed to the developers

* Products need to be defined in the Google Play Console

* Tracking made by Google

IYSE C

Google Play Billing Presentation

Your server (optional)

Your A
iU Content delivery

Purchase data
Purchase validation

API Google
Play Billing

Google Play Backend

Checkout flow
Product list
Track transactions
Process payment

Billing requests

Google Play

)JAAUSEC

Google Play Billing Presentation

* Payment process handled by Google

4 2 90 A 547 m 0O o4 5 1546

< Purchase

Yearly gas subscription.
dh

One-time deals

Gas (Trivial Drive Sample App)

-

Gas (Trivial Drive $0.99
Sample App) plus tax ®

By tapping "Buy", you agree to the Terms of Service - Android (US).

G Pay

Premium (Trivial Drive Sample App) $0.99

E Premium

)JAAUSEC

Payment successful

Google Play

LA 4

A 5:47

Google Play Billing Presentation

e Purchase validation can be performed in 2 ways
* Verify purchase on a server

 Verify purchase on a device

* |n any case, Google returns a JSON object containing
the response data of the purchase

* INAPP_PURCHASE DATA
DEEPHAN

Google Play Billing Presentation

* The JSON object contains
* orderld: Identifier of the transaction
e packageName: App name
e productld: Product identifier

* purchaseState: Integer with 2 possible values O
(Purchased) or 1 (Canceled)

* purchaseToken: String generated by Google Play to
uniquely identify the transaction

)JAAUSEC

Google Play Billing Presentation

* Example of INAPP PURCHASE DATA

"orderld":"6395511243536442409.3765700896946863",
"packageName":"com.lima.doodlejump",
"productid”:"doodlejump.candys1000",

"purchaseTime":1574248391379,

"purchaseState":0,
"developerPayload":"",
"purchaseToken":"ijkgeytwuimhgxidsloanbnc"

IYSE C

12

Google Play Billing Presentation

* Google Play signs the JSON object

* The Google Play Console generates an RSA key pair
for each application

* The private key is associated to the application used

* The application uses the public key to validate the
signature

)JAAUSEC

Google Play Billing Presentation

* Google recommends to validate purchase details on a
server controlled by the developer

Y Notel It's highly recommended to verify purchase details using a secure backend server that you trust|When a server isn't an

option, you can perform less-secure validation within your app.

\
4

 However, it is still possible to verify the purchase on
the device by validating the signature

A Warning: This form of verification isn't truly secure because it requires you to bundle purchase verification logic within your

app. This logic becomes compromised if your app is reverse-engineered.

SIANYSE C 14

Google Play Billing Presentation

* Trivial Drive v2
 Sample app

* Example on how to
use the Google Play
Billing API

—

d be implemented on

String TAG = "IABUtil/Security”;

String A(= "RSA";

String il il ITHM = "SHAlwithRSA™;

2 (String blic String s
I0Exception {
TextUtils.isEmpty(signedData) TextUtils.isEmpty(basefdPublicKey)
TextUtils.isEmpty(signature)) {
BillingHelper.logWarn(TAG, "Purchase verification failed: missing data.");

return false;

PublicKey key = generatePublicKey(basef4PublicKey);

return verify(key, signedData, signature);

IYSE C 15

Google Play Billing Presentation

* Security-related methods] For a secure 1lmplementation, code should be implemented on

* a server that communicates with the application on

IYSE C 16

Google Play Billing Presentation

* And what about 3™ party libraries?
* Prime31

Purchase Validation

Google highly recommends always validating purchases on a secure server.|The plugin will do on device validation for youlbut Android apps are very easily

hacked so this should not be relied on.

* UnitylAP

* | ocal validation: For client-side content, where all content is contained in the application and is enabled once purchased, the validation should take place on the target device,
without the need to connect to a remote server. Unity IAP is designed to support local validation within your application. See Local validation below for more information.

* Remote validation: For server-side content, where content is downloaded once purchased, the validation should take place on the server before the content is released. Unity

does not offer support for server-side validationjhowever, third-party solutions are available, such as Nobuyori Takahashi's AP project.

SIANYSE C 17

Google Play Billing Presentation

)JAAUSEC

18

Google Play Billing Presentation

* Google gives the possibility to validate the
purchase locally

* In the documentation, Google performs the
validation on the device

* Well know 3™ party libraries only support device
validation

* So what do you think developers are going to do?

)JAAUSEC

Known Vulnherabilities
A little bit of history

IYSE C

Known Vulnerabilities

e 2013: Dominik Schurmann found 2 vulnerabilities
allowing to bypass the payment process

e Bug disclosed to Google (Hall of Fame)

* Dominik developed an app as PoC called BillingHack

* Just need to launch the app in background
A ¥4 0923

BillingHack

This is a proof-of-concept implementation to attack Google's

in-app billing API

IYSE C

21

Known Vulnerabilities

1. A malicious app can impersonate the Google Play Billing
service (com.android.vending)

 Define an Intent filter with a high priority
<intent-filter android:priority=“2147483647" >

<action android:name=“com.android.vending.billing.InAppBillingService.BIND” />
</intent-filter>

* Note
 An implicit Intent is sent to initiate the Billing service

 Android decides which component should receive the intent
based on the intent information

SIANYSE C 2

Known Vulnerabilities

2. If the signature is an empty string, the validation is true

public static boolean verifyPurchase(String base64PublicKey, String signedData, String signature) {
if (signedData == null) {
Log.e(TAG, "data is null");
return false;
}
boolean verified = false;
if (1TextUtils.isEmpty(signature)) {
PublicKey key = Security.generatePublicKey(base64PublicKey);
verified = Security.verify(key, sighedData, signature);
if (lverified) {
Log.w(TAG, "signature does not match data.");
return false;

}
}

return true;

Known Vulnerabilities

Your App 1. Implicit Intent to start the Billing service
e S
2. Obtain the

Intent due to
the Intent filter

3. Replies with:
- A fake JSON object
- An empty signature

- BillingHack

DEEPHEY 24

Known Vulnerabilities

* Google fixed these 2 vulnerabilities by applying the
following modifications

1. Every app using the Google Play Billing APl should
define which is the targeted package for the intent

Intent intent = new Intent("com.android.vending.billing.InAppBillingService.BIND");

intent.setPackage(« com.android.vending");

* If an explicit Intent is not defined, Google won’t
allow the app to be published on the Play Store
DEEPHES £

Known Vulnerabilities

2. The function checking the signature was modified in
order to return true only if the signature is valid

public static boolean wverifyPurchase(5tring base64PublicKey, String signedData, String signature) |
if (TextUtils.isEmpty(signedData) TextUtils.isEmpty(base6dPublicKey)
TextUtils.isEmpty(signature)) {

Log.e(TAG, "Purchase verification failed: missing data.");

return false;

PublicKey key = Security.generatePublicKey(basebdPublicKey);

return Security.verify(key, signedData, signature);

Source: Trivial Drive v2

IYSE C

26

Known Vulnerabilities

SO[CAN WE REMOVE
A CLIENT SIDE ISSUE

S,

m»
USING A GLIENT, SIDE | I‘IK”

Al LW R,

IYSE C

Known Vulnerabilities

* |If your app is performing the verification process
locally, you can always circumvent the payment by

1. Binding the Billing service to an app you control

2. Modify the signature verification in order to return
always true

 The main “problem” is to find how the app is
performing the signature verification!

IYSE C 28

Known Vulnerabilities

* Hacking Steps

3. Modify the smali 4. Modify the smali
= 4 code to replace the e d code to replace the
package signature validation

2. Decompile the

1. Install Billing
%)
app with apktool

Hack

7. Install the newly
created app

5. Recompile the 6. Sign the app with

11
app with apktool 8. PROFIT!!

—>

jarsigner

IS E C 2

Known Vulnerabilities

* Some tools allows you to perform this process
automatically

* LuckyPatcher is a tool allowing to modify an Android
app in order to bypass the payment

* This app uses the PoC provided by Dominik

)JAAUSEC

Vulnerable Applications
How to obtain unlimited credits?

IYSE C

Vulnerable Applications

* Doodle Jump (com.lima.doodlejump)

* Platform game (“How high can you get?”)
* “Named Best of 2015 by Google Play editors”

* Buy different items, but you need candies!

32

Vulnerable Applications

* Very easy to modify in order to buy items for free!

* Replace “com.android.vending” by “org.billinghack”

jadx-gui - doodlejump.apk

o

e e S L L Y T E e T Y

IabHelper.this.mSubscrip

}

}

TabHelper.this.mSetupDone = true;
if (onIabSetupFinishedListener '= null) {
onIabSetupFinishedListener.onIabSetupFinished(new IabResult(e, "

}

¢ catch (RemoteException e) {
if (onIabSetupFinishedListener '= null) {
onIabSetupFinishedListener.onIabSetupFinished(new IabResult(IabH

T

e.printStackTracel();

I

Intent intent = new Intent("com.andro 1ing.b1ll 1lL3 ce.BIND");
intent.setPackage("com.andrc ;

List list = null;

try {

33

Vulnerable Applications

* Then, modify the “verifyPurchase” function to return true

jadx-gui - doodlejump.apk

& com.limasky.billing.labHelper © com.limasky.billing.Security
e e K i E o
imPurt java.security.KeyFactory;
import java.security.NoSuchAlgorithmException;
import java.security. 1cKey;
import java.security.Signature;
import java.security.SignatureExc
import java.security.spec.X589EncodedKeySpec;

public class Security {
private static final String KEY_FACTORY_ALGORITHM = "R
private static final String SIGNATURE_ALGORITHM = “"SHAlwit
private static final Sstring TAG = "IABUt1l 1ty";

public static boolean verifyPurchase(String str, String str2, String str3) {
if (!TextUtils.isEmpty(str2) && ! Utils.isEmpty(str) && !TextUtils.isEmpty(str3)) {
return verify(generatePublicKeyl(str), str2, str3);

}

Log.e(TAG, "Purchase ve cation failed: missing
return false;

g
3

4

public static PublicKey generatePublicKey(String str) {
try {
return KeyFactory.getInstance(KEY_FACTORY_ALGORITHM) .generatePublic(new X509Encoded
} catch (Throwable e) {
throw new Runtime ption(e];

IYSE C

Vulnerable Applications

DEMO

IYSE C

Vulnerable Applications

* Snoopy Pop
(com.jamcity.snoopypop)

e Game similar to Bubble Witch
but with Snoopy

* You can buy coins and lives

IYSE C 3

Vulnerable Applications

* Unity library is used for the graphics
* But Unity also offers a Google Play Billing interface

* However Unity does not offer server-side validation

IYSE C

Vulnerable Applications

* Most of the Unity’s code is written in Mono .NET

* These DLLs are stored on /assets/bin/Data/Managed

|s assets/bin/Data/Managed/

Analytics.dll Assembly-CSharp-firstpass.dll Facebook.Unity.dll mscorlib.dll Stores.dll System.Xml.dll
UnityEngine.Analytics.dll UnityEngine.Purchasing.dll winrt.dll Apple.dll

Common.dll Facebook.Unity.10S.dll
UnityEngine.Ul.dll Assembly-CSharp.dll
System.dll Tizen.dll UnityEngine.Networking.dll

P31RestKit.dll System.Core.dll System.Xml.Ling.dll UnityEngine.dll
Facebook.Unity.Android.dll Mono.Security.dll
Validator.dll

* The most interesting one is Security.dll

* This DDL contains a function called “Validate” which verify the
signature of the purchase

IS E C s

Vulnerable Applications

GooglePlayValidatar

o With DnSpy’ a .NET : :L: ziztz:f&}llectinns.Gener‘ic;

using System.Text;

[]
d e CO m p I I e r 5 namespace UnityEngine.Purchasing.Security
|

'/ Token: 8x8200001A RID: 26

[

internal class GooglePlayValidator

’ [} [] [} E
o It S trIVIal to Obta I n _. ; // Token: @x@6@0@0E3 RID: 227 RVA: 0xP@0@6ADE File Offset: 0x00004EDO

']

11 public GooglePlayValidator(byte[] rsaKey)

[]
and modify the .NET = N
° 13 this.key = new RSAKey(rsaKey);
;?' i
COde 16 [/ Token: BxB6BBBOE4 RID: 228 RVA: BxBP0B6AEE File Offset: BxBOBBAEESR
17 public GooglePlayReceipt Validate(string receipt, string signature)
1o i
0o 0 7) 19 byte[] bytes = Encoding. .GetBytes(receipt);
® Th e Va I Id ate 20 1 byte[] signature2 = .FromBasef45tring(signature);
21 if (!this.key.Verify(bytes, signature2))
< 22 1{
fu n Ct I O n t h rOWS a n 23 throw new InvalidSignatureException();
24 ¥
° 25 Dictionary<string, object> dictionary = (Dictionary<string, cbject>
exception when the
27 dictionary.TryGetValue("orderId", out obj);

28 object obj2;

Sig n at u re iS i nva I id 29 dictionary.TryGetValue("packageName", out obj2);

object obj3;

SIANYSE C 59

Vulnerable Applications

* So, let’s just remove the code performing the check

L= I+ « I I)

1@
11
12
13
14

uintd[] []15ystem. : :FromBasef4String(string)

class UnityEngine.Purchasing.5ecurity.R5AKey UnityEngine.Purchasing.5ecurity.GooglePlayValidator: ikey

instance bool UnityEngine.Purchasing.Security.RSAKey: :Verify(uintB8[], uintd[])
17 () ldarg.1

public GooglePlayReceipt Validate(string receipt, string signature)

1

byte[] bytes
byte[] array

Encoding. .GetBytes(receipt);

.FromBaseb64String(signature);
Dictionary<string, object® dictionary = (Dictionary<string, object>)
object obj;

dictionary.TryGetValue("orderId", out obj);

object obj2;

dictionary.TryGetValue("packageName", out obj2);

Alhaardt AlaT.

SIANYSE C 20

Vulnerable Applications

* At the end, we replace your modified DLL in the app

* Don’t forget to replace with your package

* Rebuild with apktool
* And PROFIT!

* DEMO

IYSE C

Vulnerable Applications

* Fruit Ninja (com.halfbrick.fruitninjafree)
 Famous game where you need to cut fruits (like a ninja!)

e More than 100 millions of downloads

@123 ESKS

0\ f‘ % PN «
% 7 FRUIT

TN mman

42

Vulnerable Applications

e Java Native Interface (JNI)

* JNI allows to interact with native code (C/C++) from Java/Kotlin

* |n short, you can embed a shared library and your app can call
functions from this library

* FruitNinja implements sensitive functions using JNI

 And mostly for Google Play Billing functions

private static native void GotDisplayCostNative(String str, float f, String str2, String str3);

private static native void PurchaseResultNative(String str, boolean z, boolean z2, String str2, String str3);

private static native void UnsolicitedReceiptNative(String str, boolean z, String str2, String str3);

IYSE C

43

Vulnerable Applications

* Need to reverse engineer the shared library

kali# 1ls -lh libmortargame.so

-rw-r--r-- 1 root root 24M sept. 14 00:23 libmortargame.so
kali# strings libmortargame.so| grep PurchaseResultNative
PurchaseResultNative

kali#

* Shared library coded in C++
* Time consuming!

 Difficult to rebuild a new shared library

)JAAUSEC

44

Vulnerable Applications

* However, it seems that the signature validation is
ooorly made

* So it’s possible to bypass the payment

* DEMO

)JAAUSEC

Vulnerable Applications

* Anonymous app
* Magazine reader
* You can buy magazines or get a subscription
* Purchase process
1. The user selects a magazine
2. The Google Play Billing allows to buy it
3. After payment validation, the app downloads the PDF

of your magazine

)JAAUSEC

46

Vulnerable Applications

* |n the same manner as Doodle Jump or Shoopy Pop

* The signature is validated locally

* |t is possible to bypass the purchase validation as shown
before

* However, an addition verification step was added

IYSE C

Ly

Vulnerable Applications

* The purchaseToken and orderld are validated on a
server

lm Params | Headers Hex‘

POST /api53/purchaseGoogleProduct HTTP/1.1

Content-Type: application/x-www-form-urlencoded

User-Agent: Dalvik/2.1.0 (Linux; U; Android 6.0; Google Nexus 5 - 6.0.0 - API 23 - 1080x1920 Build/MRA58K)
Host:

Connection: close

Accept-Encoding: gzip, deflate

Content-Length: 401

qg8contentld=87285&token=256dc59549400fdc534994d94f401a1b1e7e10b7&device Type=S&locale=engorderld=15890047428

esolution=480&appld= , &os=ANDROID&productld-=
&version= &random=373827991¤tTs=1567783472113&uuld=707af21

SIANYSE C s

Vulnerable Applications

* When purchaseToken and orderld are not valid, the
server replies with an error code

| | Original response Edited response |

Raw - Headers [Hex Render

HTTP/1.1 200 OK
Date: Fri, 06 Sep 2019 15:24:58 GMT
Vary: Accept-Encoding

Content-Length: 74
Connection: close
Content-Type: text/html; charset=UTF-8

"data":{ errorCode":"-1","errorMessage":"Invalid purchase'}}

IYSE C

49

Vulnerable Applications

* So what happens, when we change the status code?

Raw | Headers 'Hex Render \

HTTP/1.1 200 OK
Date: Fri, 06 Sep 2019 15:24:58 GMT
Vary: Accept-Encoding

Content-Length: 71
Connection: close
Content-Type: text/html; charset=UTF-8

'data":{ errorCode":"0","errorMessage"”:"Purchase valid"}

IYSE C

50

Vulnerable Applications

* The app downloads the PDF without any issue!

IYSE C

Conclusion
That’s it?

IYSE C

Conclusion

* Developers use different techniques to protect the
Google Play Billing payment

e Obfuscation
e Shared library
* Nothing!

* However, the signature validation is mainly
oerformed locally inside the app

)JAAUSEC

Conclusion

* On 50 apps tested
e 29 apps were vulnerable (bypass payment)

* Only 5 apps used an external endpoint to perform
additional checks

* | contacted the developers, but | only get an answer
from the magazine app

* The issues are still present

)JAAUSEC

54

Conclusion

* Regarding other Billing libraries, Google is the only
one allowing local validation

 Amazon IAP (In-App Purchase) and Samsung In-App Purchase
enforces to use a server in order to retrieve the content

SIANYSE C 55

x CHECKMARX

Thanks for the support!

IYSE C

Questions?

IYSE C

References 1/4

* Google Play Billing documentation

* https://developer.android.com/google/play/billing/billing_overvi
ew

* Google Play Billing Best Practices

* https://developer.android.com/google/play/billing/billing best
practices.html

e Google Play In-App Billing Library Hacked

* https://www.schuermann.eu/2013/10/29/google-play-billing-
hacked.html

SIANYSE C s

References 2/4

* Google Play Billing — Verify purchase

 https://developer.android.com/google/play/billing/billing_library
_overview#Verify

* Prime 31 documentation — Validate purchase
* https://prime31.com/docs#tandroidlAB

* Unity documentation — Validate Purchase
* https://docs.unity3d.com/Manual/UnitylAPValidatingReceipts.html

SIANYSE C 59

References 3/4

* Billing Hack Source Code
* https://github.com/dschuermann/billing-hack

* Google prevents vulnerable apps on the Play Store
* https://support.google.com/fags/answer/7054270?hl=en
 Amazon documentation

* https://developer.amazon.com/fr/docs/in-app-purchasing/iap-
rvs-for-android-apps.html

 Samsung documentation

* https://developer.samsung.com/iap#overview
DEEPHE

60

References 4/4

* Get Freebies by Abusing the Android InApp Billing API

* https://www.checkmarx.com/blog/abusing-android-inapp-
billing-api/
* Abusing Android In-app Billing feature thanks to a misunderstood
Integration

 https://www.securingapps.com/blog/BsidesLisbon17 AbusingAndroid
InappBilling.pdf

IYSE C 61

